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The importance of context 

 

By CTO Michael Green, AI Alpha Lab ApS 

When we do modeling it’s of utmost importance that we pay attention to context. 

Without context there is little that can be inferred. 

Let’s create a correlated dummy dataset that will allow me to highlight my point. In 

this case we’ll just sample our data from a two dimensional multivariate gaussian 

distribution specified by the mean vector μX and covariance matrix ΣX. We will also 

create a response variable y which is defined like 

yt∼N(μy,t,σy) 

μy,t=1x1+1x2+1x1x2+5μy 

σy∼N(0,20) 

where x1 and x2 are realized samples from the two dimensional multivariate guassian 

distribution above. This covariance matrix looks like this 

  X1 X2 

X1 3.0 2.5 

X2 2.5 3.0 
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where the correlation between our variables are obvious. So let’s plot each variable 

against it’s response and have a look. As you can see it’s quite apparent that the 

variables are rather similar. 

Sigma <- matrix(c(3, 2.5, 2.5, 3), 2, 2) 

mydf <- as_tibble(data.frame(mvrnorm(500, c(10, 10), Sigma))) %>%  

    mutate(y = 1 * X1 + 1 * X2 + 1 * X1 * X2 + 5 + rnorm(length(X1), 0, 20)) 

gather(mydf, variable, value, -y) %>%  

    ggplot(aes(y = y, x = value, color = variable)) + 

    geom_point() + geom_smooth() + xlab("Variable value") + ylab("y") +  

    facet_grid(. ~ variable) 

 

What would you expect us to get from it if we fit a simple model? We have generated 

500 observations and we are estimating 4 coefficients. Should be fine right? Well it 

turns out it’s not fine at all. Not fine at all. Remember that we defined our coefficients 

to be 1 both for the independent effects and for the interaction effects between x1 and 
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x2. The intercept is set to 5. In other words we actually have point parameters here 

behind the physical model. This is an assumption that in most modeling situations would 

be crazy, but we use it here to highlight a point. Let’s make a linear regression model with 

the interaction effects present. 

mylm <- lm(y~X1+X2+X1:X2, data=mydf) 

In R you specify interaction effects like this “:” which might look a bit weird but just 

accept it for now. It could have been written in other ways but I like to be explicit. 

Now that we have this model we can investigate what it says about our unknown 

parameters that we estimated. 

    y 

    B CI std. Error p 

(Intercept)   14.88 -27.29 – 57.05 21.46 .489 

X1   0.06 -4.56 – 4.68 2.35 .981 

X2   0.13 -4.47 – 4.74 2.34 .955 

X1:X2   1.09 0.66 – 1.52 0.22 <.001 

Observations   500 

R2 / adj. R2   .783 / .781 
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A quick look at the table reveals a number of pathologies. If we look at the intercept 

we can see that it’s 198 per cent off. For the x1 and x2 variables we’re -94 and -87 per 

cent off respectively. The interaction effect ends up being 9 percent off target which is 

not much. All in all though, we’re significantly off the target. This is not surprising 

though. In fact, I would have been surprised had we succeeded. So what’s the 

problem? Well, the problem is that our basic assumption of independence between 

variables quite frankly does not hold. The reason why it doesn’t hold is because the 

generated data is indeed correlated. Remember our covariance matrix in the two 

dimensional multivariate gaussian. 

Let’s try to fix our analysis. In this setting we need to introduce context and the 

easiest most natural way to deal with that are priors. To do this we cannot use our old 

trusted friend “lm” in R but must resort to a bayesian framework. Stan makes that 

very simple. This implementation of our model is not very elegant but it will neatly 

show you how easily you can define models in this language. We simply specify our 

data, parameters and model. We set the priors in the model part. Notice here that we 

don’t put priors on everything. For instance. I might know that a value around 1 is 

reasonable for our main and interaction effects but I have no idea of where the 

intercept should be. In this case I will simple be completely ignorant and not inject my 

knowledge into the model about the intercept because I fundamentally believe I don’t 

have any. That’s why β0 does not appear in the model section. 

data { 

  int<lower=0> N; 

  real y[N]; 

  real x1[N]; 

  real x2[N]; 

} 

parameters { 

  real b0; 

  real b1; 

  real b2; 

  real b3; 

  real<lower=1> sigma; 

} 

model { 

  b1 ~ normal(1, 0.5); 

  b2 ~ normal(1, 0.5); 

http://mc-stan.org/
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  b3 ~ normal(1, 0.5); 

  for(i in 1:N) y[i] ~ normal(b0+b1*x1[i]+b2*x2[i]+b3*x1[i]*x2[i], 

sigma); 

} 

If we go ahead and run this model we get the inference after the MCMC engine is 

done. The summary of the bayesian model can be seen below where the coefficients 

make a lot more sense. 

##                mean         sd          2.5%        97.5% 

## b0        6.2015899 4.50797603 -2.399446e+00    15.161352 

## b1        0.9823694 0.48849017  5.569159e-02     1.949283 

## b2        0.9775408 0.47906798  6.376570e-02     1.912414 

## b3        1.0014422 0.04332279  9.151089e-01     1.084912 

## sigma    20.0924148 0.62945656  1.890865e+01    21.342656 

## lp__  -1747.7225224 1.64308492 -1.751779e+03 -1745.557799 

If we look at the distributions for our parameters we can see that in the right context 

we capture the essense of our model but moreover we also see the support the data 

gives to the different possible values. We select 80 percent intervals here to illustrate 

the width of the distribution and the mass. 

 

Notice here that we are around the right area and we don’t get the crazy results that 

we got from our regression earlier. This is because of our knowledge (context) of the 
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problem. The model armed with our knowledge correctly realizes that there are many 

possible values for the intercept and the width of that distribution is a testement to 

that. Further there’s some uncertainty about the value for the main effects in the 

model meanwhile the interaction effect is really nailed down and our estimate here is 

not uncertain at all. 
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This material is provided for information purposes only and does not constitute, and 

shall not be considered as, an offer, solicitation or invitation to engage in investment 

operations or as investment advice. All reasonable precautions have been taken to 

ensure the correctness and accuracy of the information. However, the correctness and 

accuracy are not guaranteed and we accept no liability for any errors or omissions. 

The material may not be reproduced or distributed, in whole or in part, without our 

prior written consent. 

It is emphasized that investment returns shown are simulated and do not represent 

actual performance of assets during a period. If the simulated strategy had been 

implemented during the period, the actual returns may have differed significantly from 

the simulated returns presented. Past performance, whether actual or simulated, is 

not a reliable indicator of future results and the return on investments may vary as a 

result of currency fluctuations. 
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