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On the apparent success of the maximum likelihood principle 

 

By CTO Michael Green, AI Alpha Lab ApS 

 

Today we will run through an important concept in statistical learning theory and 

modeling in general. It may come as no surprise that my point is as usual “age quod 

agis”. This is a lifelong strive for me to convey that message to fellow scientists and 

business people alike. Anyway, back to the topic. We will have a look at why the 

Bayesian treatment of models is fundamentally important to everyone and not only a 

select few mathematically inclined experts. The model we will use for this post is a 

time series model describing Milk sales over time. The model specification is 

 

 

which is a standard linear model. The yt is the observed Milk sales units at time t and 

the xt,i is the indicator variable for weekday i at time t. As per usual β0 serves as our 

intercept. A small sample of the data set looks like this 

y WDay1 WDay2 WDay3 WDay4 WDay5 WDay6 WDay7 

4331 0 0 1 0 0 0 0 
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y WDay1 WDay2 WDay3 WDay4 WDay5 WDay6 WDay7 

6348 0 0 0 1 0 0 0 

5804 0 0 0 0 1 0 0 

6897 0 0 0 0 0 1 0 

8428 0 0 0 0 0 0 1 

6725 1 0 0 0 0 0 0 

which, for the response variable y, looks like the distributional plot below. 
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For those of you wth modeling experience you will see that a mere intra-weekly 

seasonality will not be enough for capturing all the interesting parts of this particular 

series but for the point I’m trying to make it will work just fine sticking with 

seasonality + and intercept. 

Estimating the parameters of the model 

We’re going to estimate the parameters of this model by 

The full Bayesian treatment, i.e., we’re going to estimate p(β|y,X) 

The Maximum likelihood, i.e., we’re going to estimate p(y|β,X) which in the tables and 

the plots will be referred to as “Freq” from the term “Frequentist” which I inherently 

dislike but I made the tables and plots a while ago so bear with me. 



4 | P a g e  

 
 

    
 

If you rememeber your probability theory training you know that p(β|y,X)≠p(y|β,X). 

Sure but so what? Well, this matters a lot. In order to see why let’s dig into these 

terms. First off, let’s have a look at the proper full Bayesian treatment. We can 

express that posterior distribution using three terms, namely the 

1) Likelihood, 

2) the Prior and 

3) the Evidence. 

 

The Evidence is the denominator and serves as a normalization factor that allows us 

to talk about probabilities in the first place. The nominator consists of two terms; the 

Likelihood (to the left), and the prior (to the right). It’s worth noticing here that the 

prior for β may very well depend on the covariates as such, and even on the response 

variable should we wish to venture into emperical priors. Explained in plain words the 

equation above states that we wish to estimate the posterior probability of our 

parameters β by weigting our prior knowledge and assumptions about those 

parameters with the plausability of them generating a data set like ours, normalized 

by the plausability of the data itself under the existing mathematical model. Now 

doesn’t that sound reasonable? I think it does. 

Now if we look into the same kind of analysis for what the Maximum Likelihood 

method does we find the following equation 

 

which states that the probability of observing a data set like ours given fixed β’s is the 

posterior probability of the β’s divided by our prior assumptions scaled by the total 
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plausability of the data itself. Now this also sounds reasonable, and it is. The only 

problem is that the quantity on the left hand side is not sampled; it is maximized in 

Maximum Likelihood. Hence the name. On top of that what you do in 99% of all cases 

is ignore the right hand side in the equation above and just postulate that 

p(y|β,X)=N(μ,σ) which is a rather rough statement to begin with, but let’s not dive 

into that right now. So when you maximize this expression, what are you actually 

doing? Tadam! You’re doing data fitting. This might seem like a good thing but it’s 

not. Basically you’re generating every conceivable hypothesis known to the model at 

hand and picking the one that happens to coincide the best with your, in most cases, 

tiny dataset. That’s not even the worst part; The worst part is that you won’t even, 

once the fitting is done, be able to express yourself about the uncertainty of the 

parameters of your model! 

Now that we have skimmed through the surface of the math behind the two 

methodologies we’re ready to look at some results and do the real analysis. 

Technical setup 

The Bayesian approach is estimated using the probabalistic programming language 

Stan following the model described in the beginning, i.e., we have completely 

uninformed priors. This is to make it as similar to the Maximum Likelihood method as 

possible. The Maximum Likelihood method is implemented using the lm function in R. 

Thus, in R we’re simply doing 

mylm <- lm(y~WDay1+WDay2+WDay3+WDay4+WDay5+WDay6+WDay7, data=ourdata) 

meanwhile in Stan we’re doing the following, admittedly a bit more complicated, code. 

data { 

  int< lower = 0 > N;       // Number of data points 

  vector[N] y;              // The response variable 

  matrix[N, 7] xweekday;    // The weekdays variables 

} 

  

parameters { 

  real b0;  // The intercept 

  vector[7] bweekday;       // The weekday regression parameters 

  real< lower = 0 > sigma;  // The standard deviation 

http://mc-stan.org/
https://www.r-project.org/
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} 

  

transformed parameters { 

  vector[N] mu;                // Declaration 

  mu = b0 + xweekday*bweekday; // The mean prediction each timestep 

} 

  

model { 

  y ~ normal(mu, sigma);    // Likelihood 

} 

  

generated quantities { 

  vector[N] yhat; 

  yhat = b0 + xweekday * bweekdayhat; 

} 

If you’re not in the mood to learn Stan you can achieve the same thing by using the 

brms package in R and run the following code 

require(brms) 

mybrms <- brm(bf(y~WDay1+WDay2+WDay3+WDay4+WDay5+WDay6+WDay7), 

data=ourdata, cores = 2, chains = 4) 

which will write, compile and sample your model in Stan and return it to R. 

Results 

Now to the dirty details of our calculations for the parameter estimates of the model. 

Throughout the results we will discuss the Bayesian estimation first and then the ML-

approach. This pertains to each plot and or table. The first result we will have a look 

at is the estimates themselves. For the Bayesian estimates we have the average 

values and the uncertainty expresses as an estimation error. For the ML approach we 

have the estimates and a standard error. Have a look. 

  Estimate Est.Error Estimate Std. Error 

Intercept 75539 450271 8866 83 

https://github.com/paul-buerkner/brms


7 | P a g e  

 
 

    
 

  Estimate Est.Error Estimate Std. Error 

WDay1 -67911 450271 -1231 117 

WDay2 -68249 450270 -1571 117 

WDay3 -68560 450269 -1882 117 

WDay4 -69072 450270 -2396 117 

WDay5 -69754 450270 -3076 117 

WDay6 -69723 450270 -3045 117 

WDay7 -66678 450270 NA NA 

If you’re looking at the table above, you might think “What the damn hell!?”, Bayesian 

statistics makes no sense at all! Why did we get these crazy estimates? Look at the 

nice narrow confidence intervals on the right hand side of the table generated by the 

maximum likelihood estimates and compare them to the wide credibility intervals to 

the left. You might be forgiven for dismissing the results from the Bayesian approach, 

since the difference is quite subtle from a mathematical point of view. After all we are 

computing the exact same mathematical model. The difference is our reasoning about 

the parameters. If you remember correctly maximum likelihood views the parameters 

as fixed constants without any variation. The variation you see in maximum likelihood 

comes from the uncertainty about the data and not the parameters! This is important 

to remember. The “Std. Error” from the maximum likelihood estimate has nothing to 
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do with uncertainty about the parameter values for the observed data set. Instead it’s 

uncertainty regarding what would happen to the estimates if we observed more data 

sets that looks like ours. Remember from the section above that, Statistically 

speaking, what ML does is maximize p(y|β,X) which expresses likelihood over 

different y’s given an observed and fixed set of parameters β along with covariates X. 

But ok, maybe you think there’s something very fishy with this model since the 

estimates are so different. How could we possible end up capturing the same time 

series? Well, rest assured that we can. Below you can see a scatter plot between the 

Observed response y and the predicted �̂� for the Bayesian and ML estimation. Pretty 

similar huh? We can also have a look at the average fitted values from the Bayesian 

estimation and the fitted values from the ML method. As you can see they agree to a 

rather high degree. 
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Graphs can be quite decieving though so let’s do our homework and quantify how 

good these models really are head to head. 

Model validation and sanity checking 

I’ll start by taking you through the standard measures of goodness within time series 

analysis. Specifically we have the following measures. 

 Mean Absolute Error (MAE) 

 Mean Absolute Standard Error (MASE) 

 Mean Absolute Percentage Error (MAPE) 

 Root Mean Square Error (RMSE) 

 Normalized Root Mean Square Error (NRMSE) 

 Coefficient of Variation Root Mean Square Error (CVRMSE) 

 Proportion of variance explained (R²) 

These are quantified in the table below and as you can see there’s virtually no 

difference between the two estimations. The reason for this is of course that they 

were built with the same open assumptions about which values that are plausible. In 

fact both estimation procedures almost accept anything that’s consistent with the data 

at hand. 

  Bayes Freq 

MAE 803.19 803.63 

MASE 0.79 0.79 

MAPE 0.12 0.12 
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  Bayes Freq 

RMSE 1117.51 1117.01 

NRMSE 0.10 0.10 

CVRMSE 0.16 0.16 

R2 0.45 0.45 

So again it seems like there’s not much differentiating these models from one 

another. That is true while looking at the result of the average fitted values from the 

two estimates. However, there’s a massive difference in the interpretation of the 

model. What do I mean by that you might ask yourself, and it’s a good question 

because if the fit is apparently more or less the same we should be able to pick any of 

the methods right? Wrong! Remember what I said about sampling being important as 

it unveils structure in the parameter space that is otherwise hidden through the ML 

approach. In the illustration below you can see the posterior density of each β for the 

weekday effects. Here it’s clear that they can take many different values which ends 

up in equally good models. This is the reason why our uncertainty is huge in the 

Bayesian estimation. There is really a lot of probable parameter values that could be 

assumed by the model. Also present in the illustration is the ML estimate indicated by 

a dark vertical line. 
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If you look closely there are at least two or three major peaks in the densities which 

denotes the highest probability for those parameters (In this plot we have four 

different MCMC chains for each parameter), so why on earth is ML so crazy sure about 

the parameter values? If you read my post you already know the answer, as we 

already discussed that the error/uncertainty expressed by the ML approach has 

nothing to do with the uncertainty of the parameters. It’s purely an uncertainty about 

the data. As such there is no probabilistic interpretation of the parameters under the 

ML methodology. They are considered as fixed constants. It’s the data that’s 

considered to be random. 

There is one more important check that we need to do and that’s a posterior 

predictive check just to make sure that we are not biased too much in our estimation. 

Again inspecting the density and cumulative distribution function below we can see 

that we’re doing quite ok given that we only have day of week as covariates in our 

model. 
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Diving into the intercept 

As you saw previously there’s way more support for different values of our parameters 

than the ML method shows us. To further visualize this we’ll take a look at the 

samples for the intercept β0 chain by chain using violin plots. They show the 

distribution on the y axis and the chain id on the x axis. As before the ML estimate is 

indicated by a black horizontal line. You can see that the ML approach only agrees 

with the expected value of chain number 2. The other support is completely ignored 

and not exposed to the user. 
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Why is this an issue one might wonder, and the answer to that is that there is no 

guarantee that chain number two is the one that best represents the physical reality 

we’re trying to model. The purpose of any model is (or at least should be) to 

understand the underlying physical reality that we’re interested in. As such the 

company selling the Milk that we just modeled might ask how much is my Base sales 

each day? We know that we can answer this because that is what we’re capturing 

using the intercept in our model. Let’s answer these questions based on our 

estimations 

Mrs. Manager: “So Miss Data Scientist, what’s our base sales?” 

Miss Data Scientist: “Well I have two answers for you. I will answer it using two 

uninformed approaches; an ML approach and a Bayesian approach. Here goes.” 
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1. Bayesian answer: Your base sales is 75,539 which never happens and depending 

on the day is reduced by around -68,563.8 yielding an average Saturday sales of 

8,861. 

2. Maximum likelihood answer: Your base sales is 8,866 which happens on an 

average Saturday. All other days this is reduced by an average of -2,200 

The summaries you can see in this table. 

Weekday AvgSalesBayes AvgSalesFreq 

Sun 7,628 7,635 

Mon 7,289 7,295 

Tue 6,979 6,984 

Wed 6,466 6,470 

Thu 5,785 5,790 

Fri 5,816 5,821 

Sat 8,861 8,866 

Mrs. Manager: “That doesn’t make sense to me at all. Just pick the best performing 

model” 

Miss Data Scientist: “They’re both equally good performance wise.” 
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Mrs. Manager: “I don’t like this at all!” 

Miss Data Scientist: “Me too.” 

 

What you should do 

So now that we have established that the Bayesian approach is necessary and useful 

the question still remains on how to fix the estimation. We will do two things to 

improve upon the estimation 

1. Set up informed priors for our believes about the plausability of the parameters 

2. Save the sampler some time by setting a baseline for the weekdays 

Basically we will modify the model like this 

 

where μy
emp and σY

emp are the empirical mean and standard deviation of the response 

variable respectively. This is a nice practical hack since it makes sure that your priors 

are in the vicinity of the response you’re trying to model. The resulting code is given 

below. You can try it on your own daily time series. It’s quite plug and play. 

data { 

  int< lower = 0 > N;       // Number of data points 

  vector[N] y;          // The response variable 

  matrix[N, 7] xweekday; // The weekdays variables 

} 

  

parameters { 

  real< lower = 0.01 > b0;  // The intercept 

  vector[7 - 1] bweekday; // The weekday regression parameters 
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  real< lower = 0 > sigma;  // The standard deviation 

} 

  

transformed parameters { 

  // Declarations 

  vector[N] mu; 

  vector[7] bweekdayhat; 

  

  // The weekday part 

  bweekdayhat[1] = 0; 

  for (i in 1:(7 - 1) ) bweekdayhat[i + 1] = bweekday[i]; 

   

  // The mean prediction each timestep 

  mu = b0 + xweekday*bweekdayhat; 

} 

  

model { 

  // Priors 

  b0 ~ normal(mean(y), sd(y)); 

  bweekday ~ normal(0, sd(y)); 

  

  // Likelihood 

  y ~ normal(mu, sigma); 

} 

  

generated quantities { 

  vector[N] yhat; 

  yhat = b0 + xweekday * bweekdayhat; 

} 

Now let’s have a look at this model instead. A quick look into these parameters show 

that we have nice clean unimodal posteriors due to our prior beliefs being applied to 

the analysis. The same table as shown previously is not shown below with the results 

for the new estimation appended to the rightmost side. For clarification we name the 

columns Estimate and SD. 

  Estimate Est.Error Estimate Std. Error Estimate SD 

Intercept 75,539 450,271 8,866 83 7,615 89 
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  Estimate Est.Error Estimate Std. Error Estimate SD 

WDay1 -67,911 450,271 -1,231 117 0 0 

WDay2 -68,249 450,270 -1,571 117 -324 122 

WDay3 -68,560 450,269 -1,882 117 -624 118 

WDay4 -69,072 450,270 -2,396 117 -1,141 123 

WDay5 -69,754 450,270 -3,076 117 -1,819 119 

WDay6 -69,723 450,270 -3,045 117 -1,788 124 

WDay7 -66,678 450,270 NA NA 1,249 122 

As you can see these estimates are quite different and to the naked eye makes more 

sense from what we know about the data set and what we can expect from intra-

weekly effects. We can further check these estimates by inspecting the posteriors 

further. Note here the “bweekdayhat[1]” which is a delta distribution at 0. This serves 

as our baseline for the intra-week effect that we’re capturing. The x-axis in the plot 

are the estimated βi’s and the y-axis for each parameter is the posterior probability 

density. 
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So from a model estimation standpoint we should be pretty happy now. But how does 

this new estimation compare to the others? Below I will repeat the model performance 

table from earlier and extend it with our new “Bayes2” estimation. 

  Bayes Freq Bayes2 

MAE 803.19 803.63 803.21 

MASE 0.79 0.79 0.79 

MAPE 0.12 0.12 0.12 

RMSE 1117.51 1117.01 1117.05 
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  Bayes Freq Bayes2 

NRMSE 0.10 0.10 0.10 

CVRMSE 0.16 0.16 0.16 

R2 0.45 0.45 0.45 

It’s evident that our new way of estimating the parameters of the model yields not 

only a more satisfying modeling approach but also provides us with a more actionable 

model without any reduction from a performance perspective. I’d call that a win win. 

Basically this means that our data scientist can go back with confidence and approach 

the manager again with robust findings and a knowledge about the space of 

potentially plausible parameters! 

Summary and finishing remarks 

Today we looked at how to use Bayesian analysis applied to a real world problem. We 

saw the dangers in applying the maximum likelihood method blindly. Moreover we 

saw that the Bayesian formalism forces you to make your assumptions explicit. If you 

don’t it will show you all possibilities that the mathematical models supprts given the 

data set. This is important to remember and it is NOT a problem with the Bayesian 

analysis; It is a feature! So if I can leave you with some recommendations and 

guidelines when dealing with models I would say this: 

 There’s nothing wrong in experimenting with ML methods for speady development 

of prototype models but whenever you are going to quantify your trust in your 

model you have to and I mean have to sample it and treat it in a proper 

probabilistic, i.e., Bayesian formalism. 
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 Always make your assumptions and beliefs explicit in your final model. This will 

help not only you but fellow modelers who might use your model moving forward. 

 Learn to understand the difference between Maximum Likelihood and Sampling 

the posterior probability distribution of your parameters. It might be hard at first 

but it will be worth it in the end. 

 Accept that there is no such thing as an analysis without assumptions! When 

you’re doing linear regression using Maximum Likelihood you are effectively 

assuming that any value between minus infinity and plus infinity are equally likely 

and that is nonsense my friend. 
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This material is provided for information purposes only and does not constitute, and 

shall not be considered as, an offer, solicitation or invitation to engage in investment 

operations or as investment advice. All reasonable precautions have been taken to 

ensure the correctness and accuracy of the information. However, the correctness and 

accuracy are not guaranteed and we accept no liability for any errors or omissions. 

The material may not be reproduced or distributed, in whole or in part, without our 

prior written consent. 

It is emphasized that investment returns shown are simulated and do not represent 

actual performance of assets during a period. If the simulated strategy had been 

implemented during the period, the actual returns may have differed significantly from 

the simulated returns presented. Past performance, whether actual or simulated, is 

not a reliable indicator of future results and the return on investments may vary as a 

result of currency fluctuations. 
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